Foie, Médicaments et alcool Bases Pharmacologiques

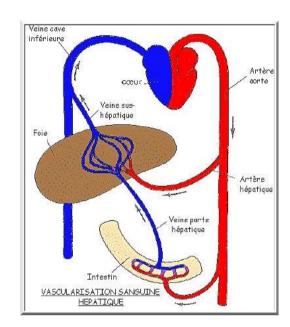
Dr. Fabien DESPAS

Service de Pharmacologie Médicale Facultés de Médecine de Toulouse

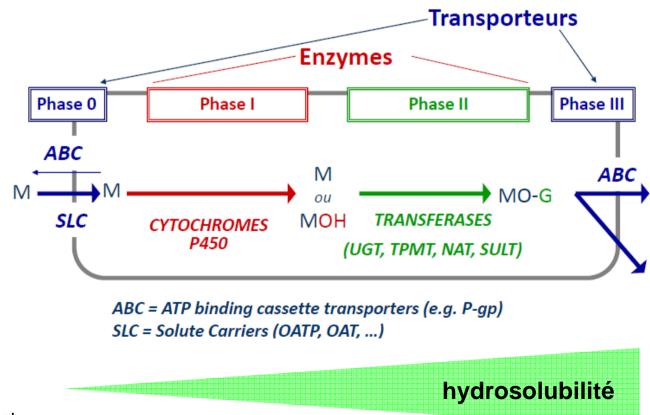
Déclaration conflits d'intérêts

Aucun conflit d'intérêt à déclarer

Plan

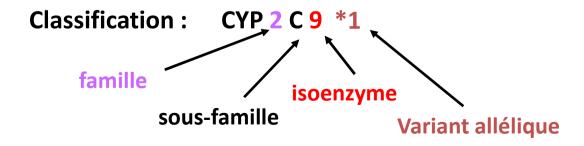

- Physiologie hépatique
 - Métabolisation
- Facteurs modifiant la métabolisation des médicaments
 - Facteurs physiologiques
 - Facteurs génétiques
 - Facteurs environnementaux
 - Consommation aiguë d'alcool
 - Consommation chronique d'alcool
 - Interactions médicamenteuses
 - Facteurs physiopathologiques

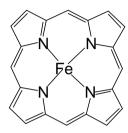
Plan

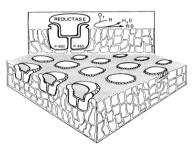

- Physiologie hépatique
 - Métabolisation
- Facteurs modifiant la métabolisation des médicaments
 - Facteurs physiologiques
 - Facteurs génétiques
 - Facteurs environnementaux
 - Consommation aiguë d'alcool
 - Consommation chronique d'alcool
 - Interactions médicamenteuses
 - Facteurs physiopathologiques

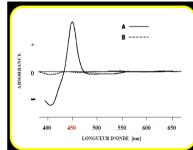
Physiologie hépatique

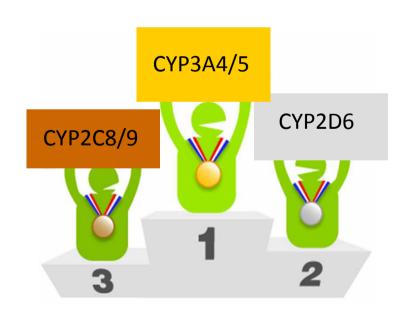
- Le foie : 3 fonctions
 - Stockage
 - Métabolisme glucidique et lipidique
 - Synthèse
 - Protéines plasmatiques, bile...
 - Epuration (élimination)
 - Métabolisation des xénobiotiques dont médicaments
 - Excrétion par la bile
- Apports sanguin hépatique (≈25% débit cardiaque)
 - Veine porte : 80 à 70%
 - Artère hépatique : 20 à 30%

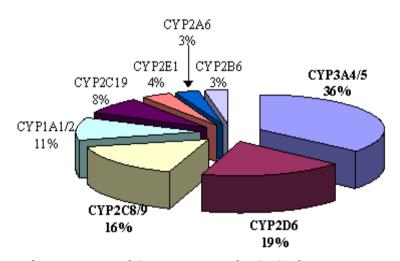



- Deux grands types de réactions enzymatiques
 - Réactions de fonctionnalisation : phase I
 - Réactions de conjugaison : phase II

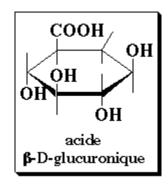

a. Réaction de Phase I


- Hydroxylation, N-oxydation, S-oxydation
- Catalysées par les cytochromes P450
 - Hémoprotéines comme l'hémoglobine
 - Enzymes du réticulum endoplasmique
 - Pic de 450nm en présence de CO
- Super-famille des Cytochromes P450
 - 17 familles
 - 57 isoenzymes identifiées dans le génome humain




Heme

- a. Réaction de Phase I
 - CYP450 métabolisation des médicaments
 - 3 isoenzymes métabolisent ≈ 70% médicaments
 - CYP 3A4/5
 - CYP 2D6
 - CYP 2C8/9



Répartition médicaments métabolisés par CYP450

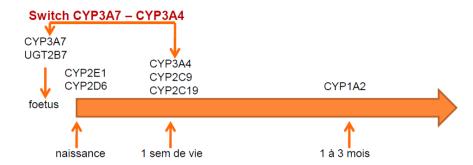
artemisinin paclitaxel NSAIDs: PPIs: bupropion¹ torsemide diclofenac esomepr cyclophosphamide amodiaquine² ibuprofen lansopra efavirenz¹ cerivastatin naproxen omepraz ifosfamide repaglinide piroxicam pantopra ketamine meperidine Oral Anti-epi	ole S-metoprolol halothane e propafenone isoflurane ole timolol methoxyflurane	Macrolide antibiotics: clarithromycin erythromycin (not 3A5)
methadone nevirapine propofol glipizide glyburide Others: Angiotensin II Blockers: losartan irbesartan clopidog Cothers: celecoxib fluvastatin phenytoin proguani rosiglitazone torsemide valproic acid warfarin zafirlukast diazepar phenytoi phenytoi phenytoi cothers: celecoxib imiprami subsetalol proguani rosiglitazone voriconazi	amitriptyline clomipramine desipramine duloxetine fluoxetine imipramine obligatione desipramine duloxetine duloxetine chlorzoxazone ethanol paroxetine N,N-dimethyl formamide theophylline→8-OH Antipsychotics: I haloperidol risperidone thioridazine Others:	NOT azithromycin telithromycin telithromycin Anti-arrhythmics: quinidine→3-OH (not 3A5) Benzodiazepines: alprazolam diazepam→3OH midazolam triazolam Immune Modulators: cyclosporine tacrolimus (FK506) sirolimus HIV Antivirals: indinavir ritonavir saquinavir nevirapine Prokinetics: cisapride Antihistamines: astemizole chlorpheniramine

b. Réactions de Phase II

- Réactions consécutives à la réaction de phase I
- Conjugaison d'une molécule au métabolite oxydé
 - Acide glucuronique : glucuroconjugaison
 - UGT : UDP-glucuronosyltransférase
 - Groupement sulfate : sulfoconjugaison
 - Groupement acétyl: acétylation
 - •
- Plusieurs conjugaisons pour une même molécule sont possibles
- Permet d'augmenter l'hydrosolubilité du composé

Plan

- Physiologie hépatique
 - Métabolisation
- Facteurs modifiant la métabolisation des médicaments
 - Facteurs physiologiques
 - Facteurs génétiques
 - Facteurs environnementaux
 - Consommation aiguë d'alcool
 - Consommation chronique d'alcool
 - Interactions médicamenteuses
 - Facteurs physiopathologiques


a. Facteurs physiologiques

Age

- Nouveau-Né
- Nourrisson et petit enfant
- Enfant

- Sujet âgé
 - 🔰 débit sanguin hépatique
 - Vieillissement hépatique
 - A 80 ans, fonctions estimées à 30%
- Sexe
 - Activité de glucuro-conjugaison + importante chez l'homme que chez la femme
 - Régulation hormonale sexuelle des UGT

	Dormicum (midazolam) CYP3A4	Phenhydan (phenytoine) CYP2C9, 2C19	Caféine CYP1A2	Morphine UGT2B7	Paracétamol UGT1A6,1A9
T1/2 NN	6-12h	Préma: 75h NN: 20h	NN: 72-96h	Préma: 10- 20h NN: 8h	NN: 2-5h Sulfo- conjugaison
T1/2 enfant	1-1.5h	10-15h	5h (dès 9 mois)	1-2h	Sulfo- conjugaison
T1/2 adulte	1.5-3.5h	10-15h	3-5h	2-4h	1-3h Glucuro- conjuguaison

b. Facteurs génétiques (études de Pharmacogénétique)

- Gènes codent pour des protéines
- Sujets porteurs d'allèles mutés (Single Nucleotide Polymorphism, SNP)

• CYP3A4: plusieurs SNP identifiés, mais pas d'adaptation posologique suivant PG

- CYP3A4*1 Activité : 100%

– CYP3A4*22 Activité réduite

CYP3A4/5

CYP3A5

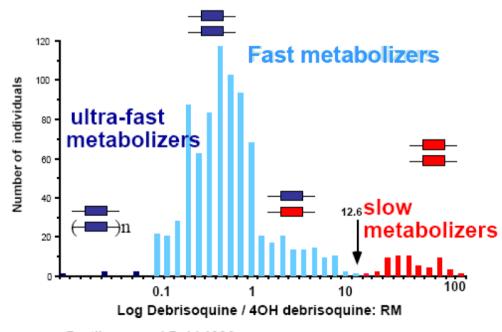
- CYP3A5*1 Activité 100%

- CYP3A5*3 Activité 0%

Fréquence sujets Caucasiens
 Fréquences sujets Africains

» CYP3A5*1/*1:1,2% CYP3A5*1/*1:48,4%

» CYP3A5*1/*3:16,8% CYP3A5*1/*3:45,2%


» CYP3A5*3/*3:82% CYP3A5*3/*3:6,4%

b. Facteurs génétiques (études de Pharmacogénétique)

- CYP2D6

CYP2D6

- Identification >40 SNPs CYP2D6
 - Métaboliseurs lents (7% des caucasiens) : Homozygotes mutés
 - Métaboliseurs rapides (88% des Caucasiens)
 - Ultra Rapide Métaboliseurs (1% des Caucasiens): 2 à 13 copies du gène
- Substrats du CYP2D6
 - fluoxetine,
 - oxycodone,
 - ritonavir,
 - codéine...

Bertilsson and Dahl 1996

b. Facteurs génétiques (études de Pharmacogénétique)

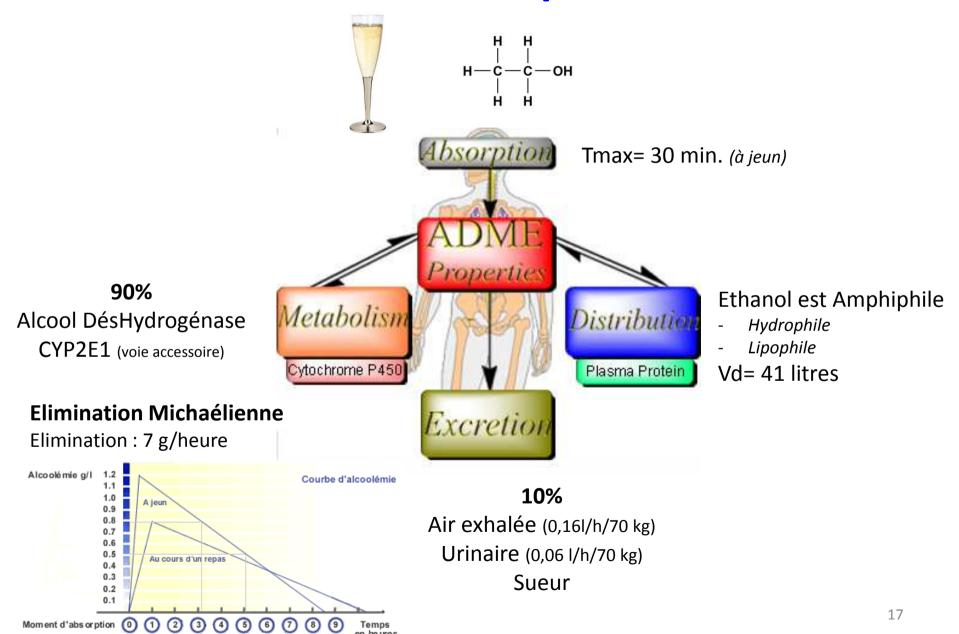
- CYP2C8/9
 - CYP2C8
 - Identification de CYP2C8*3
 - » in vitro : activité enzymatique diminuée
 - » En clinique : diminution de la t½...

CYP2C9

- CYP2C9*1 Activité : 100%
- CYP2C9*2 Activité : 20%
- CYP2C9*3 Activité: 5%
- Métaboliseurs lents
 - » Caucasiens : 10%
 - » Africains: 2%
 - » Asiatiques : 3%
- Test recommandé par FDA pour initiation warfarine

CYP2C8/9

c. Facteurs environnementaux


- Compétition de la métabolisation des xénobiotiques sur les mêmes complexes enzymatiques
- Capacités de moduler les activités enzymatiques
 - Ex d'inhibiteurs : éthanol (prise aiguë), jus de pamplemousse +++, cresson, vin rouge...

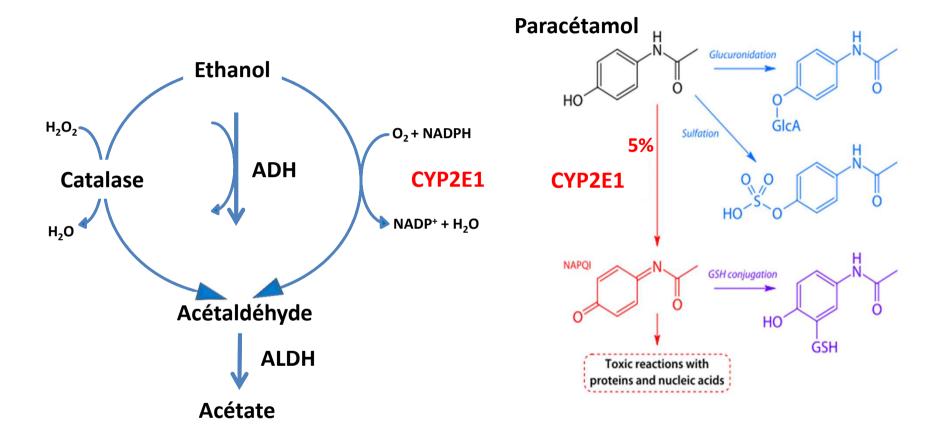
• Ex d'inducteurs : éthanol (prise chronique), tabac, caféine, viande grillée (charbon de bois), légumes crucifères (ex. brocolis), millepertuis +++

«Pharmaco»-cinétique de l'alcool

Consommation AIGUË d'alcool & effets sur le métabolisation des médicaments

Binge drinking

- Binge = bringue
- Biture express
 - Terme de marine : « lovage en biture »



Puissants effets inhibiteurs enzymatiques

- PK : Insuffisance hépatocellulaire aiguë « transitoire »
 - Attention aux intoxications accidentelles au PARACETAMOL !!!...
 - Etude SALT, Cas de lésions hépatiques graves à doses thérapeutiques

Consommation AIGUË d'alcool & métabolisation du paracétamol

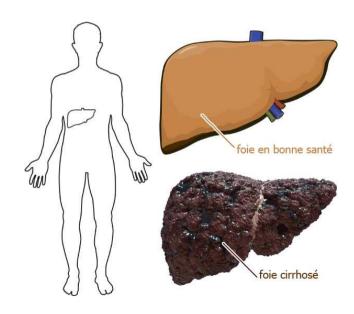
CYP2E1 enzyme de la métabolisation éthanol et paracétamol

Consommation AIGUË d'alcool & métabolisation du paracétamol

- Métabolites toxiques NAPQI produit par CYP2E1
- CYP2E1 peut être inhibé par métabolisation de l'alcool
- Chronopharmacologie : alcool & paracétamol
 - Effet protecteur de la co-administration délai de 6 h.
 - Potentialisation effets toxiques de la co-administration délai de 16-18 h.
- Complexité situations de vraie-vie
 - Multiples spécialités contenant du paracétamol
 - Confusion entre posologie maximale journalière et Dose maximale par prise

Consommation CHRONIQUE d'alcool & effets sur le métabolisation des médicaments

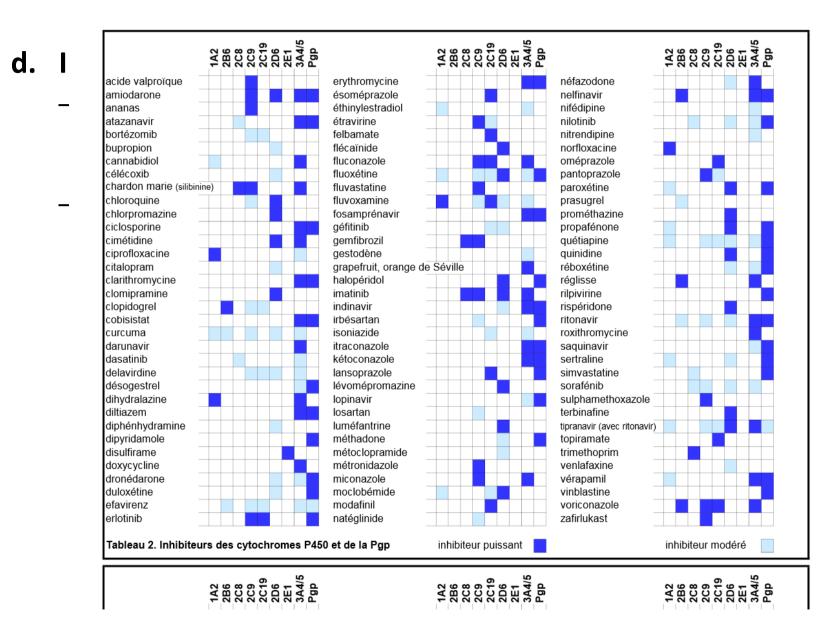
Alcoolisme


Consommation régulière et excessive de boissons alcoolisées

Effets inducteurs enzymatiques

- Augmentation activité enzymatique ADH et CYP2E1 (également autres CYP)
 - Augmentation risque hépatotoxique du paracétamol

• Puis hépato-toxicité de l'alcool...


- Hépatopathies
- Au stade cirrhose = insuffisance hépatique

21

d. Interactions médicamenteuses

- Certains médicaments sont inhibiteurs enzymatiques des CYP450
 - = Augmentation concentrations plasmatiques
- Certains médicaments sont inducteurs enzymatiques des CYP450
 - = Diminution concentrations plasmatiques

d. Facteurs physiopathologiques

- Diminution débit sanguin hépatique (état de choc, insuffisance cardiaque...)
- Hépatopathies aiguës
 - Niveau des transaminases est un mauvais marqueur du degré d'insuffisance hépatocellulaire
 - Ictère est le premier signe d'altération marquée des capacités d'élimination hépatique
 - A un stade ultérieur, chute du taux de Prothrombine et du facteur V

Hépatopathies chroniques

	1 point	2 points	3 points
Encéphalopathie	Absente	Confusion	Coma
Ascite	Absente	Discrète	Modérée
Bilirubinémie	<35 μmol/l	35-50 μmol/l	> 50 µmol/l
Albumine	> 35 g/l	28-35 g/I	<35 g/l
Prothrombine	>50%	40-50%	<40%

Classification de Child Pugh

Classe A: 5 à 6; Classe B: 7 à 9; Classe C: 10 à 15

d. Facteurs physiopathologiques

- L'insuffisance hépatocellulaire modifie la pharmacologie des médicaments
 - 7 Biodisponibilité des médicaments avec fort effet de 1er passage hépatique

Principaux médicaments à FORT effet de 1 ^{er} passage hépatique dont la posologie doit être réduite en cas de cirrhose			
Antagonistes calciques	Cisapride		
Antidépresseurs	Hypnotiques		
Antiparkinsoniens	Morphine		
Antipsychotiques	Statines : fluvastatine et lovastatine		
Anxiolytiques	Sumatriptan		
Bétabloquants			

- Diminution des effets pharmacologiques des pro-médicaments à métabolisation hépatique (clopidogrel, codéine, midodrine, tramadol, fluoxetine...)
- —
 ¬ t ½ médicaments à métabolisation hépatique
 - Ex. benzodiazépine et cascade de métabolites actifs

CONCLUSION

- Le foie est le principal incinérateur des médicaments
- Les CYP450 sont des protéines
 - Existence d'un polymorphisme génétique expliquant en partie la variabilité interindividuelle des effets pharmacologiques
- Les xénobiotiques peuvent moduler la métabolisation hépatique des médicaments
 - Alcool prise aigüe : effets inhibiteurs
 - Alcool prise chronique : effets inducteurs
- Insuffisance hépatique : modifications propriétés pharmacologiques des médicaments avec métabolisation hépatique

Merci de votre attention